Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.
نویسندگان
چکیده
Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.
منابع مشابه
Singlet Oxygen Generation on Porous Superhydrophobic Surfaces: Effect of Gas Flow and Sensitizer Wetting on Trapping Efficiency
We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon-phthalocyanine (Pc) particles are immobilized. Singlet oxygen ((1)O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV-vis spectrometer. When oxygen flows through the porous superhydrophobic surface, s...
متن کاملUnder-water unidirectional air penetration via a Janus mesh.
Under-water and unidirectional air penetration, viz. air "diode", was effectively achieved on the basis of a composite mesh with Janus wettability. In the aqueous solution, the air bubbles can only pass through the mesh from the hydrophilic side to the superhydrophobic side, whereas they will be blocked from the opposite direction.
متن کاملNucleation, growth and coalescence phenomena of air bubbles on quartz particles in different aqueous solutions
Understanding the generation and behaviour of air bubbles in the presence of different reagents is important in the solid/liquid separation processes used to treat mineral and water and wastewater by flocculation–flotation. The presence of large air bubbles in aerated flocs, which have higher up-rising rates, can lead to the development of higher capacity units. The present work evaluated the g...
متن کاملpH effects on the molecular structure of β-lactoglobulin modified air-water interfaces and its impact on foam rheology.
Macroscopic properties of aqueous β-lactoglobulin (BLG) foams and the molecular properties of BLG modified air-water interfaces as their major structural element were investigated with a unique combination of foam rheology measurements and interfacial sensitive methods such as sum-frequency generation and interfacial dilatational rheology. The molecular structure and protein-protein interaction...
متن کاملFabrication of a superhydrophobic surface from porous polymer using phase separation
The present work reports a simple method to fabricate superhydrophobic porous polymeric surfaces by a phase separation process. The method involves the in situ polymerization of butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) in the presence of co-porogens of 1,4-butanediol (BDO) and N-methyl-2-pyrrolidone (NMP) to afford superhydrophobic surfaces with the micro/nano roughness struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 31 26 شماره
صفحات -
تاریخ انتشار 2015